
The Mobile & Embedded Systems Experts

Windows Embedded

W
H

IT
E

 P
A

P
E

R
 (

P
.�

)

Secrets to Successful Development
with Windows® Embedded

Embedded computing devices are practically everywhere
these days. Items such as slot machines, kiosks, point-of sales
terminals, TV set-top boxes, personal data assistants (PDAs),
and industrial automation equipment are some to name a few.
More often, companies are now creating these devices using
Microsoft® Windows® Embedded operating systems to bring
the power of Windows and millions of developers to these
devices. This document looks at the two embedded operating
systems that Microsoft offers, Windows CE.NET and Windows
XP Embedded (XPe), and discusses why companies are
choosing Windows Embedded, what is involved in completing
an Windows Embedded project, and areas that require spe-
cific consideration to successfully deliver Windows Embedded
products to market.

Why Windows?
Frequently, Windows is considered just a great graphical
user interface for desktop PCs. What’s often missed, are the
additional benefits that this operating system offers, making
it a strategic choice for all types of devices. The Windows
Operating System provides a standardized platform that not
only has wide hardware and software support, but commu-
nicates with other technologies, and is familiar to millions of
developers worldwide.

A key advantage of developing platforms around Windows is
that it allows companies to focus on a single software architec-
ture and use standard PC development tools such as Visual
Studio .NET and embedded Visual C++ to easily create value-
added device components. Because Windows separates the
OS and applications from the underlying hardware, designs
that incorporate Windows Embedded can choose from a wide
range of hardware and software components. This separation
allows developers to concentrate on their specific value-add
rather than having to become an expert in each piece of hard-
ware or rewriting application code. The skills already present
by millions of Windows programmers can be directly applied
to developing Windows-based embedded devices.

Another compelling feature of Windows CE .NET and XPe are
the built-in provisions for networking and Internet support.
Items such as LAN, WAN, Dialup, Wired, and Wireless as well
as the latest Microsoft browser are standard. Microsoft also
designed both operating systems to be modular, meaning you
can pick and choose which system components you want in
your embedded device. For example, if you are developing a

headless device that does not require a display, you can leave
out all the graphics modules to decrease the footprint and cost
of the end device. This selection of components is done with
easy-to-use visual development tools such as Platform Builder
for CE .NET and Target Designer for Xpe which will be dis-
cussed in detail later.

Next, we’ll look at the Windows CE .NET and XPe operating
systems to determine which is best for a given project.

Windows CE .NET

Windows CE .NET is the successor to Windows CE 3.0.
As of the writing of this document, the current version of
Windows CE .NET is version 4.2. For clarity, Windows CE
was written from the ground up; it’s not a direct subset of the
desktop version of the OS as some are led to believe. This
was to address the demands of the deep embedded market.
Primarily it was designed to:

•	 Be extremely flexible in size and functionality;

•	 Continue to leverage the skills of millions of existing
Windows developers;

•	 Include communications functionality with the operating
system;

•	 Address the requirements of the embedded marketplace
(e.g. cost, real-time, power management, etc);

•	 Be portable to many types of CPU architectures and device
platforms.

As mentioned, Windows CE .NET is comprised of modules,
each of which is broken into smaller subsets called components.
These modules and components consist of different function-
ality to support target device designs such as Web Tablets,
Smartphones, and others mentioned in this article. With Platform
Builder, the primary tool for developing Windows CE .NET sys-
tems, you create your custom version of the operating system by
picking and choosing which modules and components you want
to include in your specific device.

The minimum footprint for Windows CE .NET is less than
350 KB (essentially the kernel); you then add the specific com-
ponents your device needs. You can create task-specific devic-
es with very small footprints, or devices with full Pclike function-
ality. Another cost and memory saving feature of Windows CE is
that it can support XIP (execute in place), which allows the OS
to run directly from Flash or ROM without first being shadowed
in to RAM, thus saving additionally on memory costs.

Windows Embedded

The Mobile & Embedded Systems Experts

W
H

IT
E

 P
A

P
E

R
 (

P
.�

)

Windows CE uses the Win32 programming model as with the
desktop version of the OS and includes some of the most
commonly used Win32 APIs. Windows CE also supports
such technologies as the .NET Compact Framework, MFC,
ATL, ADO, COM, MSMQ, ActiveX, CryptoAPI, DirectX, USB,
Bluetooth, and 802.11 to name a few. This compatibility allows
Windows application developers to leverage their existing
skills and apply them to Windows CE-based devices.

Windows CE also supports a broad range of communica-
tion capabilities, including support for TAPI, Winsock, TCP/IP,
WinInet, RAS, NDIS, serial, IrDA and many others. Windows
CE has built in power management for instant on/ off capabili-
ties, making it possible for CE-based devices to run substan-
tially longer with increased functionality than a typical laptop.
Users can instantly turn the device on and start right where
they left off without having to wait for the OS to boot
and resume.

Another feature of CE is its high degree of portability. Windows
CE is not limited to just x86-based architecture. Windows
CE .NET primarily supports four families of microprocessors:

•	 ARM. Examples of supported processors include
ARM720T, 920T, 1020T, StrongARM, XScale, and OMAP

•	 MIPS. Supported processors include AU1500, VR4310,
and 20Kc core.

•	 SHx. Supported processors include SH-3, SH-3 DSP, and
SH-4.

•	 x86. Supported processors include 486, 586, Elan, Cyrix,
Geode, Celeron, and Pentium I, II, III, and IV.

For a complete list of supported processors, check the list on
the Microsoft CE .NET website at:

http://www.microsoft.com/windows/embedded/ce.net/evalua-
tion/hardware/ processors.asp.

If you are further interested in learning more about Windows
CE, BSQUARE offers Windows CE training and consulting
services to help companies get started on CE projects.

Windows XP Embedded

For XP Embedded (XPe), Microsoft adapted its desktop
Windows XP operating system for the embedded environment.
Like CE, XPe is also modular so that you can pick and choose
the components that you want in your embedded device. With
XPe you can choose from more than 10,000 individual OS
features, services and drivers. Instead of using Platform
Builder as the development tool, there is a suite of tools that
you use to build your custom XPe OS. Target Designer is the

primary environment used to build a customized version of
XPe. A second tool called Component Designer is used to
create or modify components such as custom applications
and drivers, and a third tool called Target Analyzer which
analyzes target hardware and creates a descriptive file to
import into Target Designer or Component Designer.

A great advantage to XPe is that it’s binary compatible with
the desktop version of Windows XP Professonal (XP Pro),
meaning you can run just about any application or driver
on XPe that you can with XP Pro. XPe also allows any of the
Microsoft Server applications, such as SQL Server, Exchange,
Internet Information Server (IIS), to run unmodified on XPe.
Unlike CE .NET, XPe runs only on x86 PC platforms and
requires a PC BIOS.

At its smallest state, XPe requires a minimum of 8MB of
Flash/ROM and 12MB of RAM. Of course if you want to
include network support, display capabilities or additional
applications, this size can greatly increase. XPe supports
the Microsoft Management Console, Microsoft SNA Server,
Microsoft System Management Server, a large selection of
off-the-shelf 3rd party applications, as well as the NTFS secure
file system. You can use any off-the-shelf development tools
for creating XPe applications as long as you have all the
required OS modules included on the device to support the
application in question. In addition to supporting the features
of XP Pro, Xpe also includes features specific to the needs of
embedded development, such as flexible boot and storage
options and the ability to operate without a hard drive with
supported network boot capabilities.

Choosing Between Windows CE and XP Embedded

Since both operating systems have common features and
strengths, it’s important to know which one is best suited for
the device you are creating. As mentioned, Windows CE can
run on many CPUs — including very high performance RISC
processors that have a lot of computing power but very low
power consumption or heat dissipation — and is a natural
choice for handheld battery operated devices. CE is also lower
in cost than XPe in per unit licenses. XPe on the other hand is
binary compatible with XP Pro, allowing you to run off-the-shelf
XP 8 applications and drivers for the desktop on an XPe de-
vice. It also has all the security features (e.g. C2 rating, NTFS,
domains, etc.) that XP Pro provides. Developing under the XPe
OS is usually much faster than CE.

Because Windows CE and XPe are both based on the same
Windows standards and can communicate well with each
other, it is also possible that your company may develop a
whole product line that includes both CE and XPe devices.

Windows Embedded

The Mobile & Embedded Systems Experts

W
H

IT
E

 P
A

P
E

R
 (

P
.�

)

To help choose the best OS for your product, the remaining
sections look at the important considerations to keep in mind
when designing and implementing an embedded project, as
well as the tradeoffs to consider when using either CE or XPe.

several companies which offers courses as is or if required,
custom training is available to meet the specific needs of
your organization. Go to www.bsquare.com/training for more
information on BSQUARE training.

Researching

Keeping on top of the latest CE .NET and XPe news is a
good way to learn about the opportunities of using these
operating systems. There is a wide range of information
on Windows Embedded available from Microsoft as well
as 3rd party resources. A good starting point is
www.microsoft.com/windows/embedded, or do a search
on “Windows CE .NET” or “XP Embedded.”

Consulting

Initial consulting from an experienced Windows Embedded
system integrator can quickly assess what can and can’t be
done with Windows CE and XPe, and how to implement your
value-add features on an embedded device. The consulting
will answer your feasibility issues and establish a direction for
your particular project. Since BSQUARE is one of the most
experienced Windows Embedded system integrators and the
only Porting Partner for Microsoft, we often help companies get
started on CE or XPe. BSQUARE offers special consulting ser-
vices for this initial consulting. Go to www.bsquare.com/services
for more information on BSQUARE’s consulting capabilities.

Developing with Windows Embedded
To properly develop Windows Embedded devices, it’s impor-
tant to fully understand the best way to get your project started
as well as understand all of the options that this development
environment offers.

Getting Started

Getting a solid start on a Windows Embedded-based project
is critical. Unfortunately many companies start these projects
only to get stalled for weeks on otherwise straightforward is-
sues that could have been easily avoided with basic training
and education. Here are some suggestions to help you get
going quickly and productively.

Training

Training on Windows Embedded can teach you the proper
use and capabilities of the OS, development tools, techniques
to create drivers and other parts required for the operating
system. Though training may have its initial costs, in the long
run it is an important cost saver on most Windows Embedded
projects. Decision makers often have inaccurate or missing
information about the embedded operating systems to make
crucial product decisions. By training both the technical and
non-technical staff on CE, XPe or both, decision makers will
have a strong knowledge base to make key decisions. The
earlier problems and issues are discovered, the cheaper it is
to resolve them.

For Windows Embedded training, Microsoft offers lab-based
MSDN courses specifically designed for developing devices
using Windows CE or XP Embedded. BSQUARE is one of

Don’t Jump the Gun
Everyone wants to be first to market with new technologies,
but be careful not to get too far ahead of the wave.

One company was eager to come out early with a VoIP
phone device. They started developing it on a version of
Windows CE that did not yet support VoIP. They also chose
to use a new CPU that did not yet have any design wins in
the category. They built their hardware based on a reference
design that was not yet qualified. And they staffed for
development using inexperienced contract engineers.

Both the hardware and software development experienced
repeated delays. Ultimately they were unsuccessful creating
their VoIP phone in the initial timeframe allocated for the
product development. They ended up with a 4+-month de-
lay waiting for CE version 4.2 to be released which included
VoIP capabilities. It was an unfortunate exercise resulting in
alienating suppliers and fingerpointing all around.

No – ARM, MIPS, SHx or x86

Yes – requires hard real-time OS

No – customized Win32 applications

 Either Windows CE .NET

x86 CPU Architecture only?

Requires Real-time Support?

Uses Existing Win32
Applications?

Windows XP Embedded

Yes

No – or via
third party

Yes

Windows Embedded

The Mobile & Embedded Systems Experts

W
H

IT
E

 P
A

P
E

R
 (

P
.�

)

Investigating

After deciding on the product development details, prototyping
the device can help answer key questions and substantially
reduce the risk of the project, as well as wasted resources.
Cost versus features, performance versus battery life, CPU
selection, and memory requirements are just some factors you
may want to consider in your prototype. Occasionally several
(if not all) of the features you include in your device will de-
pend on the investigation and tradeoff analysis in this stage.

Custom or Targeted Device?

With Windows Embedded devices, one of the first decisions
to make is whether you will build a Microsoft targeted device
or a custom device. A targeted device is based on a standard
Microsoft configuration of the operating system that each

OEM must strictly follow. Examples include the Handheld PC,
Pocket PC, and SmartPhone designs based on the Windows
Mobile version of CE. Devices in each of these groups have
similar features and share the same applications and soft-
ware development kits (SDKs). In general, targeted devices
are consumer oriented. OEMs will coordinate development of
targeted devices directly with Microsoft so that users will have
similar hardware features and applications will work across all
the supported devices.

For custom devices, OEMs customize the Windows Embed-
ded operating system to fit the specific needs of a particu-
lar application. It’s the most common way OEMs develop
Windows Embedded devices. By customizing the operating
system, an OEM can take the features of CE or XPe and create
a custom device with device specific features — such as a
barcode reader, slot machine, or gas pump — while the end
user may not be aware of the underlying operating system.
To the user, it’s just a slot machine, cash register, or gas pump.
Since XPe and almost all CE devices are custom platforms,
we will focus on these types of devices.

Prototype to Reduce Risks

You will want to prototype your end product in the early stage
of your product development. This is where you can reduce
the risk of disastrous surprises that can show up late in the
project development cycle.
In this stage you will want to answer questions like:

•	 Can my device features be implemented successfully
with the chosen OS?

•	 What type of performance will I need to have for the
device?

•	 Which processor should I use?

•	 How can the features of the OS be used best for the
device?

If you don’t know the answers or how to determine them, you
may want to get help from an experienced gold-level systems
integrator such as BSQUARE.

Reference Boards

If you are developing a custom device, starting off with a
reference board from the semiconductor company of the CPU
specified will greatly assist in your development process.
First, you can prototype your system on real hardware for
proof-of-concept and start looking at high-risk areas instead
of having to wait for your first alpha level boards from manu-
facturing. It will help to move development tasks earlier in the
schedule instead of having to run the system software for the
first time after the first alpha level boards are even produced.

Second, a reference board also allows you to port your value-
added hardware components to your design and start devel-
oping your drivers in the early stages of the project. It will give
your team more time to flush out design issues and bugs prior
to the product shipping.

In most cases, a company’s device is initially based in part
on a reference board. For XPe you can use most off-the-shelf
PC motherboards or SBCs (Single Board Computers) as
your reference platform. It’s best to evaluate performance
characteristics early in your project so that you can more easily
modify the design, if necessary. For CE, you first will need

Beware Feature Creep
Just because it is possible to add another capability to your
device doesn’t mean it’s wise.

That’s the lesson to be learned from one company that
attempted to develop an enterprise PDA device. They got
a little carried away.

The design consisted of a telephone, a personal information
manager, a Wi-Fi connected web browser, media player,
camera, and support for a GPS. All of this in a very small
form factor with limited memory and a slow video controller.

Unfortunately, it wasn’t a success in the marketplace. Users
were confused by setup and configuration, as well as the
marketing strategy trying to hit too many targets. In the end
the device was a jack of all trades, master of none.

Windows Embedded

The Mobile & Embedded Systems Experts

W
H

IT
E

 P
A

P
E

R
 (

P
.�

)

to port the OS to the reference board of choice. Most semi-
conductor companies offer “free” sample level code which
supports CE and Platform Builder though BSPs (Board
Support Packages). But be aware with this approach if you
are going to measure performance. If you base key decisions
of performance on sample or “free” code, you stand a good
chance of basing decisions on bad data. The free code
usually has been developed to get the selected OS up and
running on the CPU manufacturer’s hardware in its simplest
form and hasn’t been optimized for performance criteria such
as speed and battery life. Using high performance code
that has shipped on multiple products from a company like
BSQUARE can help ensure your work and decisions are made
on a production quality port of Windows CE.

Too often companies put together a CE platform only to later
determine that it will not meet the project’s needs, or discover
that the build of CE was not done properly or a driver was not
optimized correctly. The problems could allow the company’s
competitors to beat them to market. Due to the flexibility of
Windows CE, there are some issues that need to be ad-
dressed (as there are with any operating system) before you
begin developing. BSQUARE, a company that has completed
hundreds of CE projects, can help you navigate these waters.

Using software and services from a company like BSQUARE
allows your company to focus on value-added components
that can set your device apart from those offered by competi-
tors. BSQUARE has board support packages that can bring
up a reference board running Windows CE with production
drivers within minutes. It also can save months of work for
companies who want to do the work in-house. BSQUARE
can also provide engineering services to help port Windows
CE or XPe to your device.

Use the Best Processor for the Product

When designing an embedded device often you will encoun-
ter a series of conflicting design requirements. This in turn
requires a number of compromises. For example, you may
want your device to be rugged and lightweight, feature rich yet
inexpensive, or have a high-resolution display but have a small
screen size. With the Windows Embedded environment, you
can limit the amount of compromise needed. Platform Builder
supports most processor Board Support Packages (BSPs)
out-of-the-box, so quick evaluation of the processor that best
supports your design requirements is quickly and easily
achieved.

Supporting Different Processors

It is not uncommon for a company to support different proces-
sors on a particular product over the span of the product’s
life cycle. A company might also have several products sup-
porting the same application platform running on the best
processor for each product. Using different processors could
allow you to have a more integrated power-conscious proces-
sor for a handheld device or a screaming power hog CPU for
a device plugged into the wall. Dealing with different proces-
sors used to be a challenge, having to compile and test for
each platform. With .NET and the Compact Framework (CF)
for CE .NET, this is no longer an issue. By building the CF into
the ROM CE image and running a JIT (Just in Time) complier,
you can now run the same application on different CE devices
as well as XPe, or even a conventional desktop Windows
platform.

Developing with CE and XPE: Things
You Need to Know
The following sections point out some of the key areas that
should be addressed when developing a Windows Embedded
product. Items such as screen, storage, localization, and
quality assurance testing are a few that need to be consid-
ered. An XPe-based project differs in several ways from a
CE-based project; these differences will be called out in the
sections below.

Screen and Display Issues

When developing a Windows Embedded device, the following
display and screen design issues are often overlooked and not
only effect the way the user interfaces with the device but can
also have consequences on how the platform is updated and
further maintained.

If your device has a display or some type of shell or user
interface, you will need an interface for users to access all of
the functions of the device. There are several possibilities and
though they may be fundamental in nature, each need to be
considered as to what is appropriate for your device.

Desktop

A desktop resembling the standard Windows interface with
a Start button and task bar, is the most familiar interface.
Desktops are appropriate for devices used as general-
purpose computers. If your device performs a dedicated
purpose (e.g. barcode reader, point of sale terminal, vend-
ing machine) you probably do not want to include a desktop
interface that accesses the whole device.

Windows Embedded

The Mobile & Embedded Systems Experts

W
H

IT
E

 P
A

P
E

R
 (

P
.�

)

Single User Application as Shell

A single application can be used as a simple shell. In this
situation, you would create an application that would always
be the interface to the device. Your application would also
need to provide the functions allowing the device to be
configured and maintained (e.g. security, network, volume).
Sometimes access to these functions is hidden behind
graphics, or is called with specific three-key calls.

Command Line

With a command line interface, you provide a non-graphical
desktop though which you can access Windows applications.
It’s similar to the old DOS command prompt interface and the
cmd.exe from the Run dialog in XPe or CE. With this option,
the end user needs to know the specific command calls as
well as a requirement for a keyboard or other text-based input
method.

Custom Interface

Custom interfaces access functions specific to the type of de-
vice you are building and are the most common for embedded
products with a display. For example, a barcode may include
a custom interface with a Scan button for operating the laser
scanner and soft alphanumeric keys for entering data. The
custom interface is also usually a separate application
that provides access to other programs and device features.
It provides maximum flexibility by allowing the shell to be
modified while not requiring changes to an application.

Custom interfaces are often the best solution, not only for end
user interaction with the device, but also added flexibility for
remotely managing the interface as well as the end image
size. Unfortunately these are also the most complex to imple-
ment. With over many years of developing custom interfaces
for customers, BSQUARE has developed a proprietary
browser-based shell design technology based on ActiveX
controls and HTML scripting. This makes it substantially easier
to deliver high quality GUI designs for its customers in a short
time-frame.

Browser Support

Both Windows CE and XPe support Internet browsers. In a
majority of the new smart devices (e.g. Internet appliances,
set-top boxes, kiosks) the browser is used as a key component
(if not the only component) in the device interface.

Windows CE .NET 4.2 as well as XPe include an IE 6.0 browser
control. Also supported is Pocket Internet Explorer (PIE) which
includes similar features but is smaller in size and optimized
for mobile handheld devices. Be aware that the browser can

also be one of the larger components for the end image. Care
needs to be taken in selecting this as a user interface engine
for memory and performance constrained devices.

Display Resolution

If your device includes a display, you will need to choose the
correct resolution and display size to ensure users can easily
view the information the device is displaying. Most embedded
designs have the flexibility and requirements to support full
VGA (640x480) or higher, half VGA (640x240), quarter VGA
(320x240), or any multitude of custom resolutions.

If your Windows CE .NET-based device will have less than a
full VGA display, you will need to ensure that the graphical
elements displayed on your device will fit onto the smaller
display. For instance, if you are using a quarter panel VGA
display, the dialog boxes (which are fixed-sized bitmaps)
might have been designed to work on a full VGA display. The
result is that part of the dialog box will extend off the edge of
the display where it cannot be accessed. There are different
ways to solve this problem. One way is to redesign your dialog
boxes and graphical elements to fit into your smaller display.
Another way is to design your interface using scalable dialog
boxes. Regardless of how you solve this issue, you will need to
make sure your graphics driver supports the size and resolu-
tion of your display. If your driver does not know the correct
display size, Windows will not function properly.

Do Your Homework
Neglecting proper research and investigation in the early
stages can be hazardous to your project. A well known
consumer electronics company had developed a Web
Pad device in 2001-2002, in parallel to the 400MHz XScale
CPU becoming available, but chose instead to stick with
the less powerful 206 MHz, SA1110 processor. To save
on costs, the design also allowed for only minimal amounts
of RAM/FLASH memory and a slow video controller.

The challenge discovered late in the project, was an
under-powered hardware design coupled with a complex
graphical interface intended to give desktop PC level
performance.

As a result, the GUI was painfully slow and the project
suffered multiple delays in attempts to correct the poor
design. In the end, with over $1 million invested, the
project was cancelled.

Windows Embedded

The Mobile & Embedded Systems Experts

W
H

IT
E

 P
A

P
E

R
 (

P
.�

)

Screen Orientation

If your device uses different screen orientations — such as
portrait or landscape — you will want to ensure your applica-
tions display the correct orientation as well. The two most
common ways to solve this problem are with a “screen rota-
tion,” which automatically rotates the screen depending on
what the device is displaying. You can make the rotation with
software (called “software rotation”) or hardware (“hardware
rotation”). The tradeoff between the two choices is perfor-
mance versus cost. Hardware rotation is more expensive but
faster, while software rotation is less expensive but slower.

Software rotation usually involves modifying the display driver
to optionally rotate the screen 90, 180, 270, or 360 degrees.
Software rotation allows the unit to be physically held in any
orientation for the applications to be seen right side up. This
is a low cost solution since it doesn’t require additional hard-
ware, but the rotation translation takes CPU cycles and affects
performance. The performance degradation depends on
many factors — such as resolution and what’s being displayed
— but can be as high as a 30 percent hit.

With hardware rotation, the rotation can be performed very
fast with little or no performance degradation. The disadvan-
tage, however, is that hardware rotation can require additional
hardware and can be more costly.

Graphics Acceleration

Windows-based systems are basically graphics-based
systems. Even if you are displaying text in an editor within
Windows, the text is a graphic. Anything you can do to
improve graphics performance on the device should help
increase the speed of graphic intensive applications and the
perceived speed of all windowing operations. It is important
to include graphics benchmarks in any performance testing
you do for your device. To enable graphics acceleration on a
Windows Embedded device, an accelerated graphics driver
as well as a separate controller can be used to control the
graphics acceleration. This is especially true for SOC (System
on Chip) designs when the selected video resolution is higher
than QVGA. Most internal controllers are optimized for smaller
screens, thus larger screens running directly from the SOC
can acerbate this potential problem.

Storage Issues

On a Windows Embedded device, as with any software-
based system, storage must be provided for the OS image,
drivers, applications, databases, and a bootloader or BIOS.
A unique feature of Windows Embedded is the flexibility
in storage options.

Image Storage

For both XPe and CE supported devices, you need to provide
storage for the actual OS image and components. While it is
possible to use RAM to store an image as well as run software,
for embedded systems we will assume that the storage is in
persistent memory such as ROM or Flash memory. Since XPe
runs on standard PC hardware, an NTFS file system is usually
used to store the OS and applications on standard hard drives
as well as Flash memory. The ability to remotely boot the OS
over a network is also supported with XPe, but be aware of
the required time it may take to load a 100+ MB image and
supported applications. Windows CE has much more flexibility
and can run on a wide variety of hardware and bootable
selections. The CE image can reside in either a linear Flash
array such as a DiskOnChip or NAND type Flash, or run on
NOR and support the ability to XIP (Execute in Place).

For XPe, a barebones non-networked, command shell inter-
face (no display, keyboard, or mouse) version will require
approximately 12MB RAM and 8MB of disk space. For
Windows CE, a barebones installation is approximately
256K ROM and 40KB RAM.

As mentioned, Windows CE allows an image to be executed
in place (XIP), which means the OS image is run directly out of
ROM, and not shadowed copied into RAM first. XIP requires
ROM or linear Flash such as a Linear Flash Card or a Resident
Flash Array. DiskOnChip, CompactFlash or other Flash media
such as NAND or any type that uses a Flash file system cannot
be used for XIP, and must be copied to RAM to execute.

During development you will need to run a debug version of
the OS and supported components. In this instance you will
want your development hardware to have enough RAM and
disk space to store debug versions of the image (typically
twice the size of the retail version). Of course you only need
the extra storage during the development phase of the project.
It can be removed on your production hardware to save costs.
In addition, you will often use a separate EEPROM to store the
BIOS or bootloader for your system.

You may also want additional applications and run-times on
your system. For example, support for a browser, 3rd party
applications such as Flash or a Java Virtual Machine (JVM)
may be necessary. For these types of applications you will
want to do a careful analysis of your memory requirements
before freezing your hardware design as these can take
substantial amounts of memory to execute and store. Also
code density varies depending on the CPU type, so you may
want to plan on having extra room to allow upgrades and
enhancements to the device.

Windows Embedded

The Mobile & Embedded Systems Experts

W
H

IT
E

 P
A

P
E

R
 (

P
.�

)

Registry Storage

The Windows CE registry database, which is similar to the
registry in Windows 98 or Windows 2000, can be stored on the
device in two different ways. Neither the user nor the applica-
tions will be aware of which method has been implemented,
but as the developer you need to decide which option best
suits your device.

The first option is to use a RAM-based registry in the part of
the memory called the object store. Due to high Flash memory
costs of early CE devices as well as challenges in writing to
Flash, this method was common on some of the first versions
of Windows CE. This is a good model for devices with backup
batteries that are often warm-booted but rarely or never cold-
booted. It provides a fast and efficient boot because the reg-
istry information always remains current in RAM and ready for
users to pick up right where they left off. For devices that cold
boot more often, this option is less efficient. Either the registry
will not be persistent, meaning the device always boots to its
initial state, or the developer needs to flush the memory to a
persistent storage device whenever the registry is changed.
You can also implement kernel-level calls so that the saved
registry is loaded at boot time, but this method can become
very slow for large registries.

There is now a second option, known as a hive-based regis-
try, intended for devices that cold boot regularly but seldom
warm boot. The hive-based registry stores registry data inside
special files called hives. Because the registry files are kept on
a persistent file system rather than in RAM they do not need
to be backed-up and restored, making the cold boot process
cleaner and faster. (The trade-off is that warm booting is less
efficient because the registry needs to be read again from the
file system rather than remaining in RAM.) Using a hive-based
registry is also a good choice for devices that are intended
for multiple users, because in addition to system hives that
always load, there are also individual user hives that load only
when a particular person logs on. Care must be taken with
applications that require frequent registry updates, as this
may impose potential performance challenges as the Flash
memory is being updated.

International Support

Both Windows CE and XPe support internationalization.
Unicode is a 16-bit codeset that allows characters from
multiple countries to be represented within a supported
operating system. Both operating systems include support
for the NLS API (National Language Support API), Input
Method Editor (IME), and a Soft Input Panel.

Unicode is the native code set of XPe. The Win32 subsystem
provides both ANSI and Unicode support. Character strings
in the system, which also includes file, path, and directory
names, are represented with 16-bit Unicode characters.
The Win32 subsystem converts any ANSI characters it re-
ceives into Unicode strings before manipulating them. It
then converts them back to ANSI, if necessary, upon exit
from the system. Windows CE is also Unicode-based, but
unlike XPe, CE only supports Unicode strings. CE includes
international support for many locales and the user can
localize for other locales as well.

Check out the Microsoft Website at www.microsoft.com/
windows/embedded for a list of the locales supported in
Windows CE and XPe.

Quality Assurance

A very strong Quality Assurance program and Test Plan are
essential for any embedded device project. Because both
XPe and CE allow you to pick which components to include
in your device, the devices can be harder to test than a
standard Windows 2000/XP- or Windows 98-based system.
With a Windows CE-based product, the actual CPU and hard-
ware components can vary from creating a completely unique
device. For XPe, even if a subset of components is selected,
the hardware it will run on is still a standard x86 PC-based
platform and needs to be tested as a complete system to
make sure any removed components don’t interfere with the
selected HW and supported applications.

Since the CPU type and OS components can vary on a
CE-based device, you need an automated testing tool de-
signed specifically for CE. This will allow developers to unit test
added or modified code to ensure they haven’t created new
bugs or broken any existing code. Developers can then hand
the tested code off to be integrated. This pre-testing ensures
a much shorter integration phase. Automated testing can then
be used on the whole system during the integration stage.
When new bug fixes are provided, the whole system can be
re-tested to ensure the bug fix works and ensure that the fix
hasn’t broken anything else. At the end of integration, the code
will already be well tested, providing less chance of any major
bugs being discovered late in the development cycle which
can potentially cause huge delays. The automated tests also
allow the QA group to focus more on testing value-added
components and write their own tests to add to the test tool.

Manufacturing can also use the automated test tool to check
the units coming off the production line to ensure that the
hardware is working and that all the software components

Windows Embedded

The Mobile & Embedded Systems Experts

W
H

IT
E

 P
A

P
E

R
 (

P
.�

)

have been loaded correctly. This will help reduce the Dead on
Arrival (DOA) units that must be dealt with in the field.

Here are some key facts to consider when thinking about an
automated test plan for your company:

1.	 Bugs found prior to the product shipping are much less
costly to fix. Bugs found after the product has shipped can
require sending a service person or returning the unit to the
factory, and the bug will probably be in all the devices that
were shipped.

2.	 If bugs are discovered, typically your best people are
needed to resolve them as quickly as possible. It pulls
your best people off of projects and affects future product
schedules.

3.	 Bugs mar the reputation or your company and product
lines. The bad name will cost you more than initial lost
sales.

Some companies choose to outsource the specialized work
of QA testing to an experienced team like BSQUARE. At
BSQUARE the testing is done using two different testing tools.
We use the CE Test Kit (CETK) that is included as part of the
Platform Builder package. We also use our own proprietary
QA automation tool called CEValidator. CEValidator includes
over 9,500 test cases to verify functionality in 26 functional
areas. The tool was developed over 8 years, using all the
bugs discovered in more than 200 CE projects. The tool
includes five system stress-testing methods and new tests
can be easily added.

Tools Requirements
To port XPe or Windows CE to your hardware and create the
specific applications for the device, a set of development tools
are required. In this section, we will describe the tools and
break up the software development task into two components:

1. 	Porting the OS to the device

2. 	Developing applications for the device

Porting the OS to the Device

The process of porting the OS to a device differs depending
on which operating system and device you use. For Windows
CE, you need to determine which components of the operat-
ing system are required for your device and then port the CE
kernel to your device hardware. You can do so by developing
routines that are specific to your hardware and linking them
with the Microsoft provided kernel components (which will call
your hardware specific routines) to create the final CE kernel.

Next, develop all of the drivers needed to access the hardware
on your device (e.g. video, Ethernet, serial, parallel, custom
peripherals, etc). You can then create an “nk.bin” (a CE binary
image) that contains the CE OS components, device drivers,
and configuration files as well as any applications you want
shipped with your device. This image is then downloaded to
your device. For the above tasks you will use the develop-
ment tool, Platform Builder. After you have tested your port
(often called an “adaptation”), and are comfortable with the
build, you can use Platform Builder to create a custom SDK
(Software Development Kit) for your device. This SDK is used
to then write application specific for your device. It will include
information about the unique features your device has and the
operating system components you selected.

Now you have a working CE device. The next step is to create
applications for it. For this part, your software developers will
have several choices, which are discussed in the next section.
The two main approaches are to write managed applications
using Visual Studio.NET, or you can use eMbedded Visual
C++ to write applications that run natively on Windows CE.

For applications that are time critical or have tight performance
criteria, eMbedded Visual C++ (eVC) will be the tool used.
eVC was created specifically for Windows CE development
and ties in to Platform Builder. Once you have loaded
eMbedded Visual C++, import the SDK that was created using
Platform Builder as mentioned above. This will allow software
developers, who might not be aware of all components in your
device (or which components were left out), to create ap-
plications that will work on your device. Without the SDK, the
application developers might try to use a function or feature
in their application that is not included on your device.

For XPe, the situation is a little different. The two main tools for
creating Xpebased devices are Target Designer and Com-
ponent Designer. Target Designer is used to select among
available XPe components. Component Designer is used to
create components of your own. If you have written an XP
Pro desktop application, for example, and you want to make
it run on XPe, use Component Designer to turn your applica-
tion into an embedded component of the device. Since XPe
is binary compatible with the desktop (meaning desktop XP
applications and drivers can run unmodified on a XPe device)
the only porting you need to do is to create new drivers for
value-added components. It is also important to remember
that if you do not include all of the components, an off-the-shelf
XP application may not run properly since it may require one of
the components you left out of your system.

The Mobile & Embedded Systems Experts

Windows Embedded

W
H

IT
E

 P
A

P
E

R
 (

P
.1

0
)

For more information, please visit www.bsquare.com

About BSQUARE:

BSQUARE is a solution provider to the global embedded device
community. Our teams collaborate with OEMs at any stage in their
device development to bring quality products to market faster.
Since 1994, BSQUARE has been a trusted partner to smart device
makers worldwide.

©2006 BSQUARE Corporation. BSQUARE is a registered trademark of BSQUARE
Corporation. All other names, product names and tradenames are registered trademarks
of their respective holders. CS-WINDOWS_EMBEDDED-2003, Rev2006-10

By email at sales@bsquare.com

BSQUARE Headquarters
110 110th Ave NE Suite 200
Bellevue, WA 98004, USA
Phone: 888-820-4500 or
direct at 425-519-5900

BSQUARE San Diego
6450 Lusk Blvd. Suite E210
San Diego, CA 92121, USA
Phone: 858-535-9265

BSQUARE Akron
3480 West Market Street
Suite 105
Fairlawn, OH 44333, USA
Phone: 330-864-2300

International:

BSQUARE Vancouver
3751 Shell Road Suite 100
Richmond, BC V6X 2W2 , Canada
Phone: 425 519 5900

BSQUARE Taiwan
18F.-B, No. 89
Songren Road, Xinyi District
Taipei City 110, Taiwan
Phone: +886-2-8780-9100

Developing Applications for the Device

In addition to what’s mentioned above, there are many ways
to develop an application for your device. Four common
strategies are:

1.	 Create the application from scratch for either CE or XPe:
Use embedded C++ to create a native Windows CE appli-
cation, or use one of the components of Visual Studio or 3rd
party development environments to create an application
for XPe. Either application would need to be ported to the
other platform if you wanted to switch operating systems.

2.	 Port the application from a desktop Windows or non-Win-
dows version: Basically the same model as above except
starting with some existing code and application logic.

3.	 Develop to the lowest common denominator for Windows:
Develop your application using only those APIs and com-
ponents available on both CE and XP. You could even code
to APIs that are included in CE, XP, Windows 98 and Win-
dows 2000. There will be other differences in the code that
you can handle using environment variables and pre-pro-
cessor compiler commands. This strategy allows a single
source code base to be used for all the Windows operating
systems, and porting consists of simply recompiling. This
method, however, can get complicated because the APIs
and features are different between the OSs. Unless you
avoid features that are not supported equally on all the
OSs, you will need to degrade functionality on the operat-
ing systems that don’t have that feature.

4.	 Create a .NET managed application: Using Visual Studio
.NET you can create.NET applications for Windows CE
and XPe. Working in the same application environment that
you use for developing applications for the desktop and
Windows XP, you use the Smart Device Programmability
plug-in that ships in Visual Studio to write your applications
to the Microsoft .NET Compact Framework for Windows CE.

Information about BSQUARE
Since 1994, BSQUARE has helped world-class manufacturers
and integrators with the building blocks necessary to
design, develop, and test innovative smart device systems
quickly and cost effectively. We offer our customers deep
expertise in the latest hardware and software, providing
critical engineering services that have resulted in the
successful launch of hundreds of new products and applica-
tions. As a Gold-level member of the Windows Embedded
Partner Program, BSQUARE has been awarded the Windows
Embedded Systems Integrator and Distributor of the Year
awards by Microsoft.

Take the Next Step:
Contact BSQUARE Today
To find out more about Windows Embedded, as well as
BSQUARE professional engineering services, Windows
Embedded licensing and development tools that can
accelerate your time to market, contact BSQUARE at
1-888-820-4500 or email sales@bsquare.com.

